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ABSTRACT

A neural network classification of flow cytometry data from 22 cancer patients into two
leukemia classes is described. This approach used a back-propagating neural network with
momentum. The optimal network architecture consisted of an input layer of 32 nodes, a
single log-sigmoid hidden layer with 10 neurons, and a log-sigmoid output layer with two
output neurons corresponding to the 2 classes present. The choice of this architecture, as
well as the generation and reduction of the training and test data, is also described.

Four triais were performed in which the network was trained with 16 of the 22 patient
data sets for 15000 epochs. The network performance was then tested with the remaining 6
data sets which consisted of 3 randomly chosen data sets for each of the two leukemia
classes. These tests yielded a classification accuracy of 91.6% based on diagnosis provided
by an independent clinical cancer laboratory.

This study has significance due to the use of a 2-dimensional pattem representation as
input to the network. This pattern, called a phenogram, provided a 1000X reduction of data
size while still retaining sutficient information for leukemia class differentiability. The use of
the phenogram, then, shows promise as flow cylometry is increasingly used to support
primary microscopy cancer diagnosis.

INTRODUCTION

The diagnosis and classification of lymphoid leukemias is a multivariate decision which
is traditionally made on the basis of morphology and cytochemistry as determined through
light microscopy [1]. This process is slow, and the visual discrimination of morphologic
features is subjective and requires significant training [4]. In addition, morphologic and
cytochemical analysis methods are unable to discriminate all malignancies.

The patterns of expression of monoclonal antibodies on a patients peripheral blood are
accepted as indicators of classes of hematological malignancies. Immunologic assessments
of cell surface antigen expression provide the necessary additional criterion for a more
comprehensive classification of malignant cells [3] from 60-70% for morphologic
classification of acute leukemias alone to 99% when immunophenotypic (flow cytometric)
information is included [2]. For this reason, cellular antigen expression statistics are often
used to support diagnosis.
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The collection of large-population immunophenotypic statistics, termed immuno-
phenotyping, can be performed rapidly with a device called a flow cytometer. A flow
Cytometer can be used to measure laser stimulated fluorescence and light scatter of
individual cells flowing through an “interrogation region" where the cells are hydrodynamically
forced into a single file cellular stream and then directed through a laser beam. Wide
spectrum light scatter due to cell physiology is used to determine the functional
characteristics of each cell. Also, fluorescent conjugated monoclonal antibody (Mab)
reagents that bind specifically to membrane associated molecules are used to further identify
the cells. Clusters of differentiation (CD) expression can define unique cell populations and
percentages have been reported for a variety of phenotypic conditions including healthy
adults and children, leukemia and lymphoma subtypes, and HIV-infected individuals [1,4,5].

Almost universally, the current method of flow cytometry data analysis and disease
diagnosis is visual analysis of histograms. Realizing that the diagnosis of a particular
leukemia class may required 12-20 monocional antibodies for sufficient differentiation, many
ot which are represented by up to 5-dimensional datasets, the problem of visual flow
Cytometry data classification should be clear. The approach of immunophenotypic
classification detailed herein, using phenogram data reduction and a neural network classifier,
overcomes many of the problems associated with flow cytometry data analysis.

DATA REDUCTION

As each cell passes through a flow Cytometer laser beam, up to nine separate
measurements can be made. For minimum statistical variability, 5,000-10,000 cells are
typically run for each monoclonal antibody combination. In addition, 10-20 monoclonal
combinations are used to allow a diagnostic distinction. Consequently, flow cytometry can
produce unwieldy datasets of 1-3 megabytes per patient analysis. This was the case with the
22 patient files for this study. .

The phenogram was developed to reduce the size of immunophenotypic datasets while
maintaining the required diagnostic information [8]. The phenogram is a 2-D pattemn which is
created by thresholding the incoming analog PMT intensity data into a binary form. Multiple
antibody combinations, then, are defined by logical combinations which indicate the particular
region in the n-dimensional intensity space where a cellular event occurred. This regional
representation is combined with hardware that allows the flow Cytometer to identify the source
tube within a batch of tube from which a cell resulting in a cellular event originated [6]. The
result is a phenogram. Phenogram generation has previously been described in detail 7).
An example phenogram is shown in figure 1.

TRAINING AND TEST DATA

Immunophenotypic data were provided for 22 acute leukemia patients by an
independent clinical laboratory. The patients each had a verified diagnosis of either acute
myeloid leukemia (AML) and acute lymphocytic leukemia (ALL). Using a published acute
leukemia decision tree, it was determined that the markers for HLA-DR, CD2, CDs, CD7,
CD13, and CD33 were sufficient for the distinction between AML and ALL[3]. The cellular
expression percentages for these markers, contained in rows 1, 3, 4, and 10 were extracted
from the raw patient phenograms and used as input into the neural network classifier. In this
way, computational intensity was minimized.

NEURAL NETWORK ARCHITECTURE
The neural network was chosen to be a back-propagating type due to the fact that, since
this was the first attempt at the classification of phenogram reduced datasets, the well-defined
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nature and performance of the back-propagating algorithm would help to determine both the
classifiability of the datasets and suggest what other approaches might work better.
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Figure 1
Representative phenogram

Since the input records were determined to be 4 rows of 8 columns each, the number of
input nodes for the classifier is 32. As stated, 2 leukemia classes are represented in the
dataset. A 2 neuron output was chosen due to the increased separability over the more
compact 1-bit scheme. The desired outputs were bounded by [0.1 0.9] to increase the speed
of convergence.

Test trials in Matiab V3.5 (The Mathworks Inc., Natick, MA) were used to determine the
activation functions of the hiddenvoutput layers, learning rate, and the number of hidden
nodes present. In the determination of the number of hidden nodes, the goal was to find a
suitable balance between computational requirements, training set sum-squared eror (SSE),
the classification performance for a randomly chosen test set, and the final test set SSE.
Representative training statistics are shown in table 1. The final classification network
architecture was as follows is shown in table 2.

Table 1 - Training Performance Table 2 - Final NN
Architecture

Hidden { Floating Point | Training | Test | Test

Nodes Operations SSE Erors | SSE
] 167M 4.138 2 1.548 input nodes 32
8 221M 0.177 2 3.076 hidden nodes | 10
10 274M 0.033 0 0.015 output nodes | 2
12 328M 0.714 0 0.038 learning rate | 0.015
14 382M 0.044 1 0.939 momentum 0.8
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NETWORK TESTING PERFORMANCE

Table 3 - Network Test Performance

Trial | Test SSE AML AML ALL ALL %
Correct Errors | Correct | Errors Correct
1 0.01265 3 0 3 0 100.0
2 0.01552 3 0 3 0 100.0
3 179315 3 0 2 1 83.3
4 1.34206 3 0 2 1 83.3
Total 91.6

DISCUSSION

Test performance is sufficiently high to warrant further investigation into the use of
adaptiv_e data analysis methods to provide assistance in the flow cytome.try cfas._sification of
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