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We describe a model-based instrument design combined with a statistical classification approach for
the development and realization of high speed cell classification systems based on light scatter. In our
work, angular light scatter from cells of four bacterial species of interest, Bacillus subtilis, Escherichia
coli, Listeria innocua, and Enterococcus faecalis, was modeled using the discrete dipole approxima-
tion. We then optimized a scattering detector array design subject to some hardware constraints,
configured the instrument, and gathered experimental data from the relevant bacterial cells. Using
these models and experiments, it is shown that optimization using a nominal bacteria model (i.e.,
using a representative size and refractive index) is insufficient for classification of most bacteria in
realistic applications. Hence the computational predictions were constituted in the form of scattering-
data-vector distributions that accounted for expected variability in the physical properties between
individual bacteria within the four species. After the detectors were optimized using the numerical
results, they were used to measure scatter from both the known control samples and unknown
bacterial cells. A multivariate statistical method based on a support vector machine (SVM) was used
to classify the bacteria species based on light scatter signatures. In our final instrument, we realized
correct classification of B. subtilis in the presence of E. coli, L. innocua, and E. faecalis using SVM at
99.1%, 99.6%, and 98.5%, respectively, in the optimal detector array configuration. For comparison, the
corresponding values for another set of angles were only 69.9%, 71.7%, and 70.2% using SVM, and more
importantly, this improved performance is consistent with classification predictions. © 2008 Optical
Society of America

OCIS codes: 170.1530, 120.5820, 290.5850.

1. Introduction

The primary diagnostic used to classify cells in tradi-
tional flow cytometry is fluorescence. Molecular tags or
labels are designed such that they have distinct fluo-
rescence spectra and attach only to specific subpopu-
lations of cells. Cells passing through the sensing zone

are illuminated by the interrogation beam and elasti-
cally scatter some of the incident light. The fluorescent
tags also absorb incident optical energy, some of which
is subsequently emitted as fluorescence. The spectral
signature of the fluorescence is designed such that it
can be differentiated from the scattered light and also
from fluorescence deriving from tags that attach to
other subpopulations. The fluorescence is detected and
provides a signal whereby each subpopulation can be
counted or separated from the total population.
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Scattered light has also been used to a degree in
cytometry, though historically in a subservient role to
fluorescence. Since all cells scatter light when they
are in the incident beam, a scattered light detector
signals the presence of a particle or cell in the optical
sensing zone. Further, it has often been assumed that
scattering is monotonically dependent on particle or
cell size, and for that reason scattering has also been
used as an indication of the variability of sizes in the
cell population [1]. Most commercially available flow
cytometers sense both forward (FALS) and right-
angle (RALS) light scatter intensities. However, as
we detail in this paper, the correlation of scatter in-
tensity with respect to the size of the cells is actually
quite strongly dependent on the detector geometry
and projected solid angle as well as on the shape
and refractive index of the cells. A similar observa-
tion involving scatter measurements of polystyrene
spheres in a flow cytometer was made previously [2]
and also shown to be expected according to Lorenz–
Mie theory [3].

Since the angular variation of light scatter from
particles and cells depends on their size, shape, opti-
cal properties, and internal structure, scattering can
in principle be used to good advantage in classifica-
tion. Also, interrogation beams used in light scatter
are of low enough power that there is negligible al-
teration of the biochemical composition of the cells,
i.e., scattering diagnostics can be truly noninvasive.
Light scatter from individual cells in liquid suspen-
sions as a function of angle has been studied before
[4,5] and has been found to be sensitive to differences
in cell properties. As a general rule, near-forward
scatter (light scattered within a few degrees of the
incident beam direction) exhibits strong dependence
on the size and shape of the particle projection into
the beam as well as on the effective refractive index.
Scatter at larger angles (e.g., side and back scatter)
offers imprints of the internal nonhomogeneities and
surface characteristics of the particles. In larger
mammalian cells ��10 mm� the nuclei and mitochon-
dria are larger than optical wavelengths, and hence
scattering from these intracellular structures be-
comes important even at forward angles [5], though
that is not the case for the smaller bacterial cells used
in this study.

To effectively use a correlation of light scatter with
the morphological properties of cells, more than one
forward- or side-scatter measurement is required in
single particle instruments like flow cytometers. In
theory, the angular scattering signature from an un-
known particle can be used for biological analysis and
classification by applying two different approaches.
One could apply inverse scattering methods (that are
not always mathematically tractable) to infer infor-
mation on the size, shape, and optical properties of
the cell, which in turn could be translated into bio-
logical parameters. Alternatively, a simpler black box
approach using feature recognition and clustering al-
gorithms alone can in principle distinguish and clas-
sify cells based on the scatter from known biological
groups. To realize either of these approaches, it will

generally be necessary to measure the scatter from
each cell with a high resolution over a large angular
span, resulting in a large number of scatter measure-
ments [6,7]. Unfortunately, this is not simple to
achieve in traditional flow cytometers because of in-
terference with fluorescence detectors (which typi-
cally measure at angles 70°–100° (measured from the
laser beam propagation vector) and the high speed of
operation required to analyze a significant number of
cells in biological applications. Also, in cell sorting
applications, each cell has to be classified in a few
microseconds, which severely limits the amount of
scatter information that can be collected and pro-
cessed.

The need for high speed, especially important for
classification of rare cells, limits the number of angles
at which the scattered light signature can be sam-
pled. In other words, oversampling incurs a large
penalty, and it is necessary to position the detection
apertures at optimal or near-optimal locations so that
the maximum amount of information can be ex-
tracted from the minimum number of scattered light
detectors. Thus it is crucial to use model-based design
to select viable detector angles if the number of
scatter detectors must be limited. This is especially
true for biological samples that not only have a
large variation in size and refractive indices within
each phenotype or species but may also have con-
tamination.

To demonstrate the effectiveness of our approach,
we have optimized detector configurations using sim-
ulated scatter measurements at a few angles and
then applied multivariate statistical methods to clas-
sify actual bacteria in corresponding experiments.
We also show a strong variation in classification rates
for different sets of angles. The analytical scatter
models are used to study scatter from the bacterial
cells only in the forward angles (�45° from the trans-
mitted laser beam), allowing us to model the cells as
a homogeneous material with an effective refractive
index representative of the cells. One of the impor-
tant conclusions of this study is that the variations of
the physical properties of the bacteria have to be
included for effective optimization of high speed scat-
ter measurements. Typical models of scatter from
bacteria use a representative size and refractive in-
dex, and this approach is insufficient for many cases,
as shown in this work. This is because even small
changes in size and refractive indices can result in
order of magnitude changes in the scatter. In
addition to the changes in physical properties of bac-
teria considered here, it should be noted that instru-
ment noise and small variations in the orientation of
bacteria in a flow cytometer manifest as minor
sources of noise in scatter measurements of a bacteria
species.

This paper has three sections; Section 2 describes
the experimental techniques and the system used for
multiangle scatter measurement of single bacterial
cells, Section 3 describes the scatter models and op-
timization of detector configurations for bacteria, and
Section 4 discusses the multivariate statistical meth-
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ods applied and the results of the bacteria classifica-
tion experiments.

2. Experimental Methods

All the analyses were run on a Cytomics FC500 flow
cytometer (Beckman-Coulter, USA) equipped with a
488 nm air-cooled argon laser. The particles and cells
are forced through square microchannels (250 �m
sides) one by one across the laser beam using hydro-
dynamic forces between the sheath fluid and the fluid
containing the samples (Fig. 1). The cytometer was
retrofitted with an enhanced scatter detection system
(Beckman-Coulter, USA) that measures scatter at
four distinct forward angles and replaces the tradi-
tional forward scatter detector. This scatter measure-
ment system (Fig. 1) consists of four ring detectors
and an axial light loss (extinction cross section) de-
tector in a single assembly. The assembly can be
moved along the laser beam axis to change the angles
of measurement. The four angles of measurement in
each experiment cannot be chosen independently be-
cause the four rings in the detector are fixed with
respect to each other. Uniformly spaced optical fibers
in each ring (12 to 34 per ring) are used to direct the
light scattered into each ring to a separate ava-
lanche photodiode. The scattering signals from each
ring detector were preamplified and then amplified
to achieve 10 bit resolution. The CXP software
(Beckman-Coulter) was used to acquire the data on the
flow cytometer. WinMDI (freeware from Joe Trotter)
was used to display and analyze the flow cytometry
data.

Four different nonpathogenic bacterial cultures
from species of importance in biosafety were selected
because they span a critical range of size and shape.
Escherichia coli K12, Listeria innocua F4248, and
Bacillus subtilis ATCC 6633 are rod shaped bacteria,
and Enterococcus faecalis CG110 appears as cocci
(round-shaped) in chains. The cultures, obtained
from the laboratory of A. Bhunia in the Food Science
Department at Purdue University, were grown in
brain heart infusion (BHI) broth for 16–18 h at
37 °C, 140 rpm in a shaker incubator. The cultures
were washed (once by centrifuging at 3000 g) and

resuspended in sterile phosphate buffered saline
(PBS—pH 7.6) before analysis.

3. Scatter Models

The dimensions of the laser beam used (Gaussian
distributions of electric field amplitude, dimensions
�20 �m � 120 �m) were smaller than the width of
the microchannel (250 �m square cross section), and
hence the beam was not distorted by the edges of the
channel as in the case of cylindrical microchannels
[8]. The analytical scatter models assume the parti-
cles are in isolation in the sheath fluid, and the
angular scatter distribution is calculated and inte-
grated over the area of the forward scatter detectors.
Since the cells are much smaller than the incident
laser beam, an incident plane wave is assumed [9].
Also the cells are modeled as homogeneous particles
with effective refractive indices using the discrete
dipole approximation (DDA), and results based on
this assumption are valid for forward angles as dis-
cussed above. The DDA was first formulated in 1973

Fig. 1. (Color online) Schematic of the flow cytometer system used
in experiments.

Fig. 2. (Color online) Forward scattering signatures for represen-
tative bacteria of the four species of interest, plotted as average
differential scattering cross section (dCsc�d� averaged over �) ver-
sus forward scattering angle �. The vertical lines indicate the
center angles for the four ring apertures in the detector array. The
two sets of four lines correspond to the two different measurement
configurations, A (diamond ends) and B (circular ends).

Fig. 3. (Color online) Variation of distinguishability with forward
angle � (averaged over all azimuth angles f) for representative
bacteria of the four species. The two sets of four vertical lines
correspond to the two different measurement configurations, A
(diamond ends) and B (circular ends).
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[10] and later extended to applications in astrophys-
ics [11,12]. In this approach, the particle is divided
into volume elements (dipoles) with dimensions of
one-tenth of a wavelengths or less. Since the dimen-
sion of dipole volumes are much less than the wave-
length, each such volume of the particle can be
represented by a single dipole with suitable proper-
ties. The polarizations of these dipoles, due to both
the incident laser beam and the other dipoles in the
scattering volume, are then calculated using coupled
matrix equations. The resulting scattered field from
the whole particle is then calculated as the sum of the
fields created by the polarizations of each dipole ele-
ment in the scattering volume. A numerical algo-
rithm developed by the group of one of the authors
[13–15] using this DDA approach was used to model
the light scatter from the bacteria species.

Light scatter from four different bacteria species,
E. coli, L. innocua, B. subtilis, and E. faecalis was
studied. L. innocua, E. coli, and B. subtilis are rod-
shaped bacteria; L. innocua measures �2 �m in
length and �0.6 �m in width [16]. E. coli is typically

2 �m in length and about 1 �m in diameter [17].
E. faecalis is a spheroid-shaped bacteria or cocci in
chains, with each coccus measuring about 1.38 �m
and 1.29 �m [18]. B. subtilis forms long rods with
oval-shaped endospores, and the typical length of the
vegetative cell may vary from 2 to 8 �m depending on
the growth media used. A phase contrast light micro-
scope (Leica Microsystems USA, Bannockburn, IL)
was used to measure the average dimensions of the
vegetative cell as 4.3 �m by 0.54 �m . Typically, the
volume of the bacterial cells changes by as much as
4% during sporulation, while the refractive index in-
creases [19] from 1.39 to 1.51. The spores that are
approximately half of the size of the vegetative cell
are left intact if the cell lyses. Similarly, cell death
results in a decrease of the relative refractive index to
a minimum [20]. The analytical model of the bacterial
cells in this work assumes a nominal effective refrac-
tive index of 1.394 as has been observed previously
[17]. The angular variation of scatter was also cor-
rected for refraction of the scattered partial waves
across the flow cell on the way to the detectors. Also,

Fig. 4. (Color online) Predicted scatter plots of ring-averaged forward scattering intensities (average dCsc�d� over f) for detector
configuration A for four bacterial species (note: size of subgroups are not to scale). Each data point represents the predicted signal pair for
bacteria from a population distribution governed by Eq. (2) with the following: refractive index mean of 1.394 and standard deviation of
2% and a normal volume distribution with standard deviation of 5%.
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the longer axes of the bacteria are assumed to be
approximately aligned with the axis of flow due to the
hydrodynamic forces in a flow cytometer [17]. Never-
theless, it is to be noted that the scatter measurement
is insensitive to small rotations of the particles in the
XY plane because of the circular geometry of detec-
tors. The variation of refractive indices and sizes
results in dispersion of each bacterial species popu-
lation in the light scatter measurement space, and
hence the scatter data must eventually be processed
using multivariate statistical methods. But in the
first step of the instrument design phase, we assume
representative physical properties for each bacterial
species and endeavor to locate the few available scat-
ter detectors at optimal locations for effective classi-
fication. The computational results for angle-resolved
scatter (averaged over azimuthal angles) of the four
bacteria species are shown in Fig. 2. The differential
scattering cross section �Iscatr

2�Io� is independent of
the distance between the detector and the sample,
and is used to choose the angles for maximum dis-
crimination of the bacteria. As can be seen from Figs.
2 and 3, the angles represented by vertical dashed
lines with diamond ends (configuration A: nominal
7.8°, 11.3°, 17°, and 22.5°) are more appropriate,
while the angles highlighted by vertical dashed lines
with circular ends (configuration B: nominal 4°, 5.8°,
8.7°, and 11.5°) are not appropriate for distinguishing
between all the four types of bacteria.

For the purposes of supporting the design phase of
instrument development it is important to have a
simple model for predicting the performance of vari-
ous design configurations. To do so, we define distin-
guishability at a particular scattering angle or for a
particular detector as the absolute value of the ratio
of the difference in scattering cross sections to the
sum of scattering cross sections for a pair of repre-
sentative bacteria (see Fig. 4). A distinguishability
close to 1.0 indicates that the expected scattering
signal difference between representative bacteria
from two species is approximately equal to the sum of
the two signals, so differentiation is maximum, and a

value of 0 indicates there is no difference at this
angle.

For an array of detectors, the distinguishabilities
for each detector can be summed to provide a simple
distinguishability characteristic D of the array and of
representative bacteria from a pair of bacterial spe-
cies or subspecies, as given by

D � �
4angles

��dCsci � dCscj���dCsci 	 dCscj��, (1)

where i, j represent different bacteria.
This detector-array-summed distinguishability pa-

rameter provides a semi-quantitative indicator of the
expected performance of different detector array con-
stellations in differentiating between paired species
of bacteria and therefore can be used in instrument
design. While predicted distinguishability allows us
to compare different detector geometries, it does not
predict classification rates between pairs of bacteria.
Table 1 shows distinguishability as defined by Eq. (1)
for the six bacteria pairs for detector configurations A
and B, respectively.

This model (Table 1) predicts that in changing from
instrument design A to B there will be an improve-
ment in classification between two of the bacteria
species pairs (L. innoccua ↔ E. coli and L. innoccua
↔ E. faecalis) and a reduction in the ability to differ-
entiate between the other four species pairs. Though
it is true in general that the classification rates in
experiments (Table 2) are greater in configuration A
as predicted here, detailed comparisons with experi-
ments would show that the above predictions are
inconsistent except in the case of B. subtilis. In
fact, the prediction of increased distinguishability of
L. innocua in configuration B contradicts the exper-
imental results. In one situation (differentiating be-
tween E. coli and E. faecalis) the distinguishability is
significantly low (0.67) in configuration B, indicating
that any noise in the scatter measurements will make
differentiation of the two species relatively very dif-

Table 1. Performance Predictions for Advanced Cytometers based on Multiangle Scatter Detector Configurations A and Ba

Bacteria Species Pairs

Distinguishability D
Computed from Eq. (1)b

Classification Rates
Predicted Using Full
Model with Bacteria

Population Distributions
from Eq. (2)c

A B A B

E. faecalis versus B. subtilis 2.25 2.01 100% 87%
E. faecalis versus L. innocua 2.42 3.12 95% 79%
E. faecalis versus E. coli 1.34 0.67 77% 61%
E. coli versus B. subtilis 2.15 1.49 100% 81%
E. coli versus L. innocua 1.88 2.82 95% 79%
B. subtilis versus L. innocua 2.11 1.79 98% 74%

aTwo cases where the simple distinguishability predictions and the classification rate predicted by the full simulation differ in trend are in
bold.

bAssuming a single representative bacteria size and effective refractive index.
cno � 1.394, �n � 2%, �v � 5% (rounded to nearest integer %).
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ficult. This distinguishability estimate ignores the
variation of scatter within each species due to in-
traspecies differences in size and refractive indices,
nor does it consider instrument noise. Even the ap-

parent validity of this simple model for B. subtilis is
in fact a mirage. For example, this simple model (Fig.
3) would indicate that a single detector at 7.8° should
be much less useful than one at 22.5° to differentiate

Fig. 5. (Color online) Predicted scatter plots of ring-averaged forward scattering intensities (average dCsc�d� over f) for detector
configuration B for four bacterial species (note: sizes of subgroups are not to scale). Each data point represents the predicted signal pair
for bacteria from a population distribution governed by Eq. (2) with the following: refractive index mean of 1.394 and standard deviation
of 2% and a normal volume distribution with standard deviation of 5%.

Table 2. Classification Rates of Bacteria for Multiangle Light Scatter Detector Configurations A and B

Bacteria Species Pairs

Predicted Classification
Rates based on Full Model
with Bacteria Population

Distributions from Eq. (2)a
Measured Classification

Ratesb

A B A B

E. faecalis versus B. subtilis 100% 87% 98.5% 70.2%
E. faecalis versus L. innocua 95% 79% 81.6% 77.0%
E. faecalis versus E. coli 77% 61% 68.7% 57.9%
E. coli versus B. subtilis 100% 81% 99.1% 69.9%
E. coli versus L. innocua 95% 79% 86.3% 74.8%
B. subtilis versus L. innocua 98% 74% 99.6% 71.7%

ano � 1.394, �n � 2%, �v � 5%. Percentages rounded to nearest integer.
bAverage uncertainties are �0.5%.
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B. subtilis from E. faecalis, but reality is different
[Fig. 6(b)]. We find that for typical intraspecies vari-
ations in physical properties of biological particles
in realistic classification applications, the simple
model is not useful in predicting relative perfor-
mance of various detectors. For that reason, we are
convinced that a much more complete model that
includes the variation of scattering signatures with
intraspecies variations in physical properties must
be used.

For a model to be useful in instrument design it
must simulate all the variations in scattering signa-
tures as well as simulate the classification process
itself. In order to do so, the variance of scatter at
different angles due to the variation in refractive in-
dex and size has to be considered. Hence a normal
distribution of size and refractive index of these bac-
teria species was used in addition to their nominal
sizes and refractive indices to make predictions of
classification rates. The standard deviation of the
normal distribution in refractive index was 2% with a
mean ��� of 1.394. Similarly the standard deviation in
volume of the bacteria was assumed to be 5% to ac-
count for variation in size of the vegetative cells. This
variation in volume was modeled by corresponding
isotropic changes in the dimensions of the bacteria.
This normal population distribution of each bacteria
species was divided into 91 subgroups (13 divisions
along refractive index and 7 in volume varying from
� � 3s to � 	 3s) and was mapped on to the four
dimensional space of the two measurement configu-
rations using DDA models. Using these transformed
populations in this measurement space, an estimate
of the classification rate was made. While the two
dimensional sections of the four dimensional mea-
surement space (Figs. 4 and 5) can show a qual-
itative difference between the two measurement
scenarios, the estimated classification rates (Table
1) comprise the set of variables that could be used
as optimization parameters in an instrument de-
sign process.

The population of bacteria in each grid of the
input parameter space was weighted to its clone in
the scatter measurement space, providing us a pop-
ulation density for each subgroup. The size of each
subgroup (a four dimensional hypercuboid) in the
measurement space varies, and it was determined
by its average distance to the neighboring sub-
groups (adjacent population groups in the space of
refractive index and volume). This then allows us to
use the set of all scatter measurement simulation
points that fall within the overlapping (hyper) vol-
umes to define a conservative estimate of the mis-
classification rate. This model does not take the
instrument noise into account, but uses a conserva-
tive gating system and hence was expected to give a
reasonable estimate of classification rates. Once
scatter intensities of each subgroup are computed
using DDA, they are weighted by the population
density (w) using

wij � ��
subgroup

1


n�2�
exp���ni � no�2

2
n
2 	

�
1


v�2�
exp���Vj � Vo�2

2
v
2 	, (2)

where ni, Vj, are the refractive index and volume of
the subgroup ij. no, 
n are the mean and standard
deviation of the refractive indices; Vo, 
v are the mean
and standard deviation of the volume of bacteria.

4. Classification Methods and Experimental Results

The measured scatter at four angles in the form of
multidimensional data from each of the four known
bacteria was partitioned into training sets and the
unknown cells to be classified using a random data
partitioning algorithm. The classification problem
was to determine the rate of correct classification of
the cells partitioned as unknown particles, by using
the training sets. Figure 6 shows the distribution
(500 data points in each species) of measured scatter
intensities from B. subtilis and E. faecalis. The tra-
ditional forward and side scatter measurements
shown in Fig. 6(a) are useless in classification of these
bacteria, while scatter measurements at 7.8° and
22.5° in Fig. 6(b) show better separation, as can be
inferred from the numerical scatter model (Fig. 3).
Nevertheless, it is amply clear that these two bacteria
species cannot be resolved in this two dimensional
parametric space, and data have to be classified using
all the four dimensional data simultaneously. Hence
the SVM algorithm has been employed to classify these
data sets [21]. The fact that the classification rates for
these two bacteria at this set of angles are as high as
98.5% is not obvious from Figs. 6(b) and 6(c). Linear
discriminant analysis (LDA) was also used to classify
these data sets, and the classification results were
significantly lower (70% for the above case) due to
LDA limitations in classifying the bacteria groups
that form complex patterns in this multidimensional
data space.

Table 2 shows the final classification rates between
the four bacteria using measurement configurations
A and B in experiments. Typically when using such a
statistical classification method, accuracy does not
have to be symmetric, which means classification suc-
cess for bacteria A and bacteria B from a mixture AB
can indeed be different. But in the following cases,
the results were almost symmetrical (within the lim-
its of uncertainty), and hence the average classifica-
tion rates between any two bacteria are tabulated.

The presented uncertainty of classification �0.5%�
is the average variation of classification rates among
multiple sets of bacteria, each set containing scatter
measurements of approximately 5000 bacteria in each
species. It was observed that these results reflect the
predictions of the full scatter model, and hence high-
light the potential of these models in optimizing scatter
measurements of bacteria for high speed classification.
Once the scatter measurement system is optimized,
prior measurements of known bacteria can be used to
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classify the bacteria of an unknown sample with the
least possible uncertainty. To remove the necessity of
prior experimental data in such a classification sys-
tem, more accurate scatter models of bacteria might be
needed. This requires a more accurate distribution of
size and refractive index in a species (can be dynamic
or time varying, depending on the sample of interest)
and also gain and noise functions of the instrument.

5. Conclusions

Light scattering models are indispensable for design-
ing detector configurations for flow cytometers that
minimize the number of detectors and maximize the
performance for given classification problems. We
have proven that this model-based design approach,

in combination with multivariate statistical methods
for classifying the data vectors obtained from the
optimal detector arrays, enables label-free (scatter-
ing only) classification of many important biological
samples in modified flow cytometers. The effective-
ness of the approach was demonstrated by optimizing
an advanced multiangle (four-ring) forward scatter
flow cytometer for classification of mixtures of E. coli,
L. innocua, B. subtilis, and E. faecalis. With the
new instrument we demonstrated classification rates
ranging from a low of 68.7% (E. faecalis ↔ E. coli) up
to 99.6% (L. innoccua ↔ B. subtilis). Our work also
conclusively established that scatter models that in-
clude intraspecies variation of physical properties are
essential in optimizing detector geometries in most
cases, classification of L. innocua in the presence of
E. coli or E. faecalis, for example. Finally, the results
show that if the gain functions, noise characteristics
of the instrument, and the distribution of the relevant
morphological properties (refractive index and size)
of the bacteria are all known adequately, the numer-
ical models can be used to replace prior experimental
data for development of the classification system, in
addition to their use for optimizing the scatter mea-
surement configuration.

This research was supported through a cooperative
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the U.S. Department of Agriculture project number
1935-42000-035 and the Center for Food Safety and
Engineering at Purdue University.
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